MK网:基于Python玩转人工智能最火框架 TensorFlow应用实践,8大章节完整视频下载价值299元

MK网:基于Python玩转人工智能最火框架 TensorFlow应用实践,8大章节完整视频下载

本套课程来自MK网:基于Python玩转人工智能最火框架 TensorFlow应用实践(“网红”编程语言Python与人工智能主流框架TensorFlow开发多个有趣的人工智能应用),课程由嵌入式软件工程师,加密app开发工程师:Oscar主讲,官方售价299元,共8大章节完整无加密版,含课程资源与源码,共12.1G。文章底部附下载地址。

课程介绍:

TensorFlow 详细架构

TensorFlow 是什么?
Google的开源“人工智能系统工具”

课程主要内容
·人工智能理论知识
·开发工具介绍和环境配置
·TensorFlow 基础练习和应用实战

课程能学到什么?
·人工智能知识点
·Python库的使用
·TensorFlow框架使用和应用开发

适合人群
·人工智能初学者
·想要获得人工智能实战经验者
·TensorFlow学习者

课前储备
·Linux命令行基础
·Python 基础
·线性代数等数学基础

课程官方地址:https://coding.imooc.com/class/176.html

课程文件目录:

MK网:基于Python玩转人工智能最火框架 TensorFlow应用实践 [12.1G]
┣━━第1章 课程整体介绍 [72.6M]
┃ ┗━━1-1 课程整体介绍及导学.mp4 [72.6M]
┣━━第2章 人工智能基础知识 [206.6M]
┃ ┣━━2-1 什么是人工智能.mp4 [10.5M]
┃ ┣━━2-2 人工智能前景.mp4 [9.7M]
┃ ┣━━2-3 人工智能需要的基本数学知识.mp4 [5M]
┃ ┣━━2-4 人工智能简史.mp4 [23.1M]
┃ ┣━━2-5 AI、机器学习和深度学习的关联.mp4 [7.9M]
┃ ┣━━2-6 什么是机器学习.mp4 [64.4M]
┃ ┣━━2-7 面对AI,我们应有的态度.mp4 [16.8M]
┃ ┣━━2-8 什么是过拟合.mp4 [34.1M]
┃ ┗━━2-9 什么是深度学习.mp4 [35.1M]
┣━━第3章 TensorFlow简介和开发环境搭建 [1G]
┃ ┣━━3-1 什么是TensorFlow.mp4 [31.7M]
┃ ┣━━3-10 安装TensorFlow(上).mp4 [125.9M]
┃ ┣━━3-11 安装TensorFLow(下).mp4 [97.3M]
┃ ┣━━3-12 安装Python类库.mp4 [20.3M]
┃ ┣━━3-2 TensorFlow和其他机器学习库的对比1.mp4 [317M]
┃ ┣━━3-3 如何学习TensorFlow.mp4 [153.8M]
┃ ┣━━3-4 TensorFlow前景.mp4 [7.9M]
┃ ┣━━3-5 如何使用课程提供的虚拟机文件.mp4 [57.3M]
┃ ┣━━3-6 安装VirtualBox.mp4 [34.3M]
┃ ┣━━3-7 安装Ubuntu.mp4 [110.8M]
┃ ┣━━3-8 配置Ubuntu系统.mp4 [86M]
┃ ┗━━3-9 安装Python.mp4 [32.5M]
┣━━第4章 TensorFlow原理与进阶(代码实践) [4.4G]
┃ ┣━━4-1 从HelloWorld开始.mp4 [13.9M]
┃ ┣━━4-10 可视化利器TensorBoard(上).mp4 [127.7M]
┃ ┣━━4-11 可视化利器TensorBoard(下).mp4 [111.4M]
┃ ┣━━4-12 酷炫模拟游乐园PlayGround.mp4 [145.6M]
┃ ┣━━4-13 常用Python库Matplotlib.mp4 [196.1M]
┃ ┣━━4-14 综合小练习:梯度下降解决线性回归(上).mp4 [90.5M]
┃ ┣━━4-15 综合小练习:梯度下降解决线性回归(中).mp4 [111.2M]
┃ ┣━━4-16 综合小练习:梯度下降解决线性回归(下).mp4 [152.3M]
┃ ┣━━4-17 激活函数(上).mp4 [65.5M]
┃ ┣━━4-18 激活函数(下).mp4 [33.5M]
┃ ┣━━4-19 动手实现CNN卷积神经网络(一).mp4 [132.2M]
┃ ┣━━4-2 TensorFlow的编程模式.mp4 [8M]
┃ ┣━━4-20 动手实现CNN卷积神经网络(二).mp4 [148M]
┃ ┣━━4-21 动手实现CNN卷积神经网络(三).mp4 [164.2M]
┃ ┣━━4-22 动手实现CNN卷积神经网络(四).mp4 [118.6M]
┃ ┣━━4-23 动手实现CNN卷积神经网络(五).mp4 [162.6M]
┃ ┣━━4-24 动手实现RNN-LSTM循环神经网络(一):背景和知识点.mp4 [177.5M]
┃ ┣━━4-25 动手实现RNN-LSTM循环神经网络(二):编写实用方法(上).mp4 [169.7M]
┃ ┣━━4-26 动手实现RNN-LSTM循环神经网络(三):编写实用方法(中).mp4 [196.7M]
┃ ┣━━4-27 动手实现RNN-LSTM循环神经网络(四):编写实用方法(下)1.mp4 [143.3M]
┃ ┣━━4-28 动手实现RNN-LSTM循环神经网络(四):编写实用方法(下)2.mp4 [136.5M]
┃ ┣━━4-29 动手实现RNN-LSTM循环神经网络(五):编写神经网络模型(上).mp4 [211M]
┃ ┣━━4-3 TensorFlow的基础结构.mp4 [7M]
┃ ┣━━4-30 动手实现RNN-LSTM循环神经网络(六):编写神经网络模型(中)1.mp4 [180.7M]
┃ ┣━━4-31 动手实现RNN-LSTM循环神经网络(六):编写神经网络模型(中)2.mp4 [180M]
┃ ┣━━4-32 动手实现RNN-LSTM循环神经网络(七):编写神经网络模型(下).mp4 [158.6M]
┃ ┣━━4-33 动手实现RNN-LSTM循环神经网络(八):编写训练方法(上).mp4 [174.6M]
┃ ┣━━4-34 动手实现RNN-LSTM循环神经网络(九):编写训练方法(下).mp4 [143.6M]
┃ ┣━━4-35 动手实现RNN-LSTM循环神经网络(十):编写测试方法.mp4 [175.9M]
┃ ┣━━4-36 动手实现RNN-LSTM循环神经网络(十一):实际训练和测试.mp4 [121.2M]
┃ ┣━━4-4 图和会话.mp4 [15.7M]
┃ ┣━━4-5 Python常用库Numpy的使用.mp4 [118.5M]
┃ ┣━━4-6 什么是Tensor(上).mp4 [120.8M]
┃ ┣━━4-7 什么是Tensor(下).mp4 [80.4M]
┃ ┣━━4-8 图和会话原理及案例(上).mp4 [124.2M]
┃ ┗━━4-9 图和会话原理及案例(下).mp4 [127M]
┣━━第5章 案例一 会作曲的人工智能 [1.8G]
┃ ┣━━5-1 背景和知识点简介.mp4 [105.9M]
┃ ┣━━5-10 编写训练神经网络的方法(一).mp4 [128.6M]
┃ ┣━━5-11 编写训练神经网络的方法(二).mp4 [168.7M]
┃ ┣━━5-12 编写训练神经网络的方法(三).mp4 [204.9M]
┃ ┣━━5-13 编写神经网络生成音乐的方法(一).mp4 [179.2M]
┃ ┣━━5-14 编写神经网络生成音乐的方法(二).mp4 [235.2M]
┃ ┣━━5-15 纯TensorFlow版的预告.mp4 [7.9M]
┃ ┣━━5-2 音乐和数学的联系.mp4 [48.6M]
┃ ┣━━5-3 什么是MIDI文件.mp4 [81.6M]
┃ ┣━━5-4 配置开发环境.mp4 [50.3M]
┃ ┣━━5-5 编写转换MIDI到MP3的方法.mp4 [45.4M]
┃ ┣━━5-6 Python音乐库Music21的使用和测试方法.mp4 [95.8M]
┃ ┣━━5-7 编写整个神经网络模型.mp4 [264.2M]
┃ ┣━━5-8 编写从训练文件获取音符的方法.mp4 [139.2M]
┃ ┗━━5-9 编写从预测数据来生成音乐的方法.mp4 [128.3M]
┣━━第6章 案例二 会Photoshop的人工智能 [984.3M]
┃ ┣━━6-1 背景和知识点简介.mp4 [65.8M]
┃ ┣━━6-10 编写神经网络生成图片的方法.mp4 [115.2M]
┃ ┣━━6-11 代码完成和测试模型.mp4 [72.4M]
┃ ┣━━6-12 纯TensorFlow版的预告.mp4 [4.7M]
┃ ┣━━6-2 配置开发环境.mp4 [79.1M]
┃ ┣━━6-3 什么是GAN(生成对抗网络).mp4 [20.7M]
┃ ┣━━6-4 什么是DCGAN.mp4 [30.2M]
┃ ┣━━6-5 编写DCGAN中的判别器模型(上).mp4 [81.1M]
┃ ┣━━6-6 编写DCGAN中的判别器模型(下).mp4 [160.9M]
┃ ┣━━6-7 编写DCGAN中的生成器模型.mp4 [128.7M]
┃ ┣━━6-8 编写训练神经网络的方法(上).mp4 [107.2M]
┃ ┗━━6-9 编写训练神经网络的方法(下).mp4 [118.3M]
┣━━第7章 案例三 会开3D赛车的人工智能 [3G]
┃ ┣━━7-1 背景和知识点简介.mp4 [108.7M]
┃ ┣━━7-10 Q-Learning 实现机器人走迷宫:游戏主程序.mp4 [102.6M]
┃ ┣━━7-11 Deep Q Learning 实现迷宫游戏:决策算法(1).mp4 [127.4M]
┃ ┣━━7-12 Deep Q Learning 实现迷宫游戏:决策算法(2).mp4 [202.7M]
┃ ┣━━7-13 Deep Q Learning 实现迷宫游戏:决策算法(3).mp4 [226.1M]
┃ ┣━━7-14 Deep Q Learning 实现迷宫游戏:决策算法(4)和主程序.mp4 [159.2M]
┃ ┣━━7-15 Policy Gradient 实现 Gym 游戏.mp4 [201.2M]
┃ ┣━━7-16 A3C 实现 3D 赛车游戏:成果演示.mp4 [125.9M]
┃ ┣━━7-17 A3C实现3D赛车游戏:讲解A3C和编写环境.mp4 [188.1M]
┃ ┣━━7-18 A3C实现3D赛车游戏:编写A3C算法和主程序.mp4 [259.6M]
┃ ┣━━7-2 强化学习的经典实验环境.mp4 [228.5M]
┃ ┣━━7-3 配置开发环境(1).mp4 [277.2M]
┃ ┣━━7-4 配置开发环境(2).mp4 [309.1M]
┃ ┣━━7-5 什么是强化学习.mp4 [160.2M]
┃ ┣━━7-6 什么是Q Learning.mp4 [18.1M]
┃ ┣━━7-7 Q-Learning 实现机器人走迷宫:创建环境.mp4 [118.3M]
┃ ┣━━7-8 Q-Learning 实现机器人走迷宫:决策算法(1).mp4 [162.9M]
┃ ┗━━7-9 Q-Learning 实现机器人走迷宫:决策算法(2).mp4 [120.5M]
┣━━第8章 知识点总结和课程延展 [393.9M]
┃ ┣━━8-1 总结陈词和补充.mp4 [36.9M]
┃ ┣━━8-2 如何学好英语.mp4 [56.9M]
┃ ┣━━8-3 如何学好数学.mp4 [88.2M]
┃ ┣━━8-4 如何学习一门技术及课程知识点总结.mp4 [120.9M]
┃ ┗━━8-5 深入AI和TensorFlow.mp4 [91M]
┣━━课程代码和素材(包含训练好的参数文件).rar [92.5M]
┗━━project.zip [72.8K]


资源下载

您需要先后,才能查看下载地址

资源来源于网络,仅限购买正版前临时了解,版权归原作者所有,请下载后24小时内自行删除。如有需要,请购买正版。 如有侵权,请联系删除(邮箱:viprescn@gmail.com)。
未经允许不得转载:VIP课程/资源网 » MK网:基于Python玩转人工智能最火框架 TensorFlow应用实践,8大章节完整视频下载